
14

Rediscovering some Problems of
Artificial Intelligence in the
Context of Organic Chemistry

B. G. Buchanan
G. L. Sutherland and
E. A. Feigenbaum
Computer Science Department
Stanford University

1. THE MASS SPECTROMETRY PROGRAM

The set of computer programs known as HEURISTIC DENDRAL is an
attempt to develop machine intelligence in a scientific field. In particular its
task domain is the analysis of mass spectra, chemical data gathered routinely
from a relatively new analytical instrument, the mass spectrometer.
HEURISTIC DENDRAL has been developed as a joint project of the Depart-
ments of Computer Science, Chemistry, and Genetics at Stanford University.
This collaboration of chemists and computer scientists has produced what
appears to be an interesting program from the viewpoint of artificial
intelligence and a useful tool from the viewpoint of chemistry.

For this discussion it is sufficient to say that a mass spectrometer is an
instrument into which is put a minute sample of some chemical compound
and out of which comes data usually represented as a bar graph. This is what
is referred to here as the mass spectrum. The instrument itself bombards
molecules of the compound with electrons, thereby producing ions of
different masses in varying proportions. The x-points of the bar graph
represent the masses of ions produced and the y-points represent the relative
abundances of ions of these masses.

The HEURISTIC DENDRAL process of analysing a mass spectrum by
computer consists of three phases. The first, preliminary inference (or
planning), obtains clues from the data as to which classes of chemical
compounds are suggested or forbidden by the data. The second phase,
structure generation, enumerates all possible explicit structural hypotheses
which are compatible with the inferences made in phase one. The third
phase, prediction and testing, predicts consequences from each structural

253

MACHINE LEARNING AND HEURISTICSEARCH

hypothesis and compares this prediction with the original spectrum to choose
the hypothesis which best explains the data. Corresponding to these three
phases are three subprograms. The program(s) have been described in
previous publications, primarily in Machine Intelligence 4, and in a series of
Stanford Artificial Intelligence Project Memos (54, 62, 67, 80).

The PRELIMINARY INFERENCEMAKER programcontainsalistofnames
of structural fragments, each of which has special characteristics with respect
to its activity in a mass spectrometer. These are called ‘functional groups’.
Each functional group in the list is a LISP atom, with properties specifying
the necessary and/or sufficient conditions (spectral peaks) which will appear
in a mass spectrum of a substance containing that fragment. Other properties
of the functional group indicate which other groups are related to this
one - as special or general cases.

The program progresses through the group list, checking for the necessary
and sufficient conditions of each group. Two lists are constructed for output:
GOODLIST enumerates functional groups which might be present, and
BADLIST lists functional groups which cannot be in the substance that was
introduced to the mass spectrometer.
GOODLIST and BADLIST aretheinputstothe STRUCTUREGENERATOR,

which is an algorithmic generator of isomers (topologically possible
graphs) of a given empirical formula (collection of atoms). Each GOODLIST
item is treated as a ‘superatom’, so that any functional group inferred from
the data by the PRELIMINARY INFERENCE MAKER will be guaranteed to
appear in the list of candidate hypotheses output by the STRUCTURE
GENERATOR.

The STRUCTURE GENERATOR'S operation is based on the DENDRAL
algorithm for classifying and comparing acyclic structures (Lederberg,
unpublished). The algorithm guarantees a complete, non-redundant list of
isomers of an empirical formula. It is the foundation for the development of
the whole mass spectrometry program.

The third subprogram is the MASS SPECTRUM PREDICTOR, which
contains what has been referred to as the ‘complex theory of mass spectro-
metry’. This is a model of the processes which affect a structure when it is
placed in a mass spectrometer. Some of these rules determine the likelihood
that individual bonds will break, given the total environment of the bond.
Other rules are concerned with larger fragments of a structure - like the
functional groups which are the basis of the PRELIMINARY INFERENCE
MAKER. All these deductive rules are applied (recursively) to each structural
hypothesis coming from the STRUCTURE GENERATOR. The result is a list
of mass-intensity number pairs, which is the predicted mass spectrum for
each candidate molecule.

Any structure is thrown out which appears to be inconsistent with the
original data (i.e., its predicted spectrum is incompatible with the spectrum).
The remaining structures are ranked from most to least plausible on the

254

BUCHANAN,SUTHERLAND AND FEIGENBAUM

basis of how well their spectra compare with the data. The top ranked
structure is considered to be the ‘best explanation’.

Thanks to the collaboration of Dr Gustav Schroll, an NMR (Nuclear
Magnetic Resonance) PREDICTOR and INFERENCE MAKER have been
added to the program. Thus the program can confirm and rank candidate
structures through predictions independently of mass spectroscopy, bringing
the whole process more in line with standard accounts of ‘the scientific
method’. Thus the HEURISTIC DENDRAL program is expanding from the
‘automatic mass spectroscopist’ to the ‘automatic analytical chemist’. Other
analytical tools, such as infra-red spectroscopy, will be incorporated
eventually.

Three papers have appeared in the chemical literature (Duffield et al. 1969,
Lederberg et al. 1969, Schroll et al., in press) in the past year. The first
paper describes the HEURISTIC DENDRAL program and tabulates numbers
of isomers for many compounds. This is of particular interest to chemists
because it indicates the size of the search space in which structures must be
found to match specific data. The second paper explains the application of
the program to ketones: the subclass of molecular structures containing the
keto radical (C-0). The whole process from preliminary inference (plan-
ning) through structure generation and prediction of theoretical spectra was
applied to many examples of ketone spectra. The results, in terms of actual
structures identified, were encouraging. The third paper explains the applica-
tion of the program to ethers. Introducing the NMR PREDICTOR contributed
to the successful results which are described in the ether paper.

Acceptance of these papers by a chemistry journal is some measure of the
program’s capability, but indicates more its novelty and potential. A better
measure of its performance level is provided by comparing the program
with professionals. In July (1969) Professor Carl Djerassi, an eminent mass
spectroscopist, asked the members of his graduate mass spectrometry seminar
to interpret three mass spectra, giving them only the empirical formulas of the
structures and stating the fact that they were acyclic structures - just the
information given to the program. On the first problem, the program and
one graduate student got the correct structure; another graduate student
and a post-doctoral fellow were both close, but not correct. On the second
problem, the program got the correct answer; two graduate students included
the correct answer in undifferentiated sets of two and four structures; while
the post-doctoral fellow missed the answer. On the last problem, the program
missed the correct structure and the post-doctoral fellow included it in a pair
of equally likely structures. The computer spent approximately two to five
minutes on each problem; the chemists spent between fifteen and forty
minutes on each. From this small experiment and their own observations,
(admittedly sympathetic) mass spectroscopists have said the program
performs as well as graduate students and post-doctoral fellows in its limited
task domain.

255

MACHINE LEARNING AND HEURISTICSEARCH

One obvious reason for the encouragingly high level of performance of
the computer is the large amount of mass spectrometry knowledge which
chemists have imparted to the program. Yet this has been one of the biggest
bottlenecks in developing the program. When there was only one theory of
mass spectrometry in the program, viz,, the complex theory in the PRE-
DICTOR, we were relatively insensitive to the difficulty of adding new
information to the theory. Although it was a time-consuming process, it was
still manageable by one programmer, working with one chemist, with most
of the time spent programming as opposed to criticizing. By the time the
planning phase was added to the program, it was easier to see how to shorten
the task of programming by separating the chemical theory from the routines
which work on the theory. The separation was by no means complete here,
but it was successful enough to reduce the programming time drastically for
the addition of new pieces of theory. Because the theory could be changed by
changing an entry in a table, many iterations with the expert were now
possible in a single one or two hour session at the console. The preponderance
of time was now spent by the chemist deciding how to change the rules in
the table to bring the program’s behaviour more in line with real data.

The organization of the PRELIMINARY INFERENCE MAKER made the
process of examining its chemical knowledge relatively simple, compared to
the process of putting knowledge into the STRUCTURE GENERATOR and
PREDICTOR programs. Both of these programs are on their way to becoming
‘table driven’ in much the same way as the PRELIMINARY INFERENCE
MAKER is now. (See Part 4.) Yet, re-designing the programs to allow easy
additions and changes to the chemical knowledge will not solve all our
problems. Because mass spectroscopy is a relatively young discipline, the
theory does not exist in any sort of comprehensive codified form. Part 2 will
discuss some of the problems of obtaining the chemical theory that has been
incorporated into the programs so far. Further, the presence of any body of
knowledge in the programs brings up questions of how and where this
knowledge is to be represented, stored, and referenced within the programs.
Part 3 will elaborate on these issues.

2. ELICITING A THEORY FROM AN EXPERT

As in the case of the Greenblatt chess program, the proficiency of the mass
spectrometry program is due in large measure to the great number of times
the behaviour of the program has been criticized by good ‘players’, with
subsequent modifications to the program. In both cases, the heuristics of
good play were not born full-blown out of the head of the programmer; they
were built up, modified and tuned through many interactions with persons
who were in a position to criticize the performance of the program. Yet one
of the greatest bottlenecks in our total system of chemists, programmers and
program has been eliciting and programming new pieces of information
about mass spectrometry. One problem is that the rate of information

256

BUCHANAN,SUTHERLAND AND FEIGENBAUM

transfer is much slower than we would like. And another problem is that the
theory itself is not as well defined as we had hoped. Since these two problems
are common to a broad range of artificial intelligence programs, our encounter
with them will be described in detail.

It should be understood from the start that there presently is no axiomatic
or even well-organized theory of mass spectrometry which we could transfer
to the program from a text book or from an expert. The theory is in very
much the same state as the theory of good chess play: there exists a collection
of principles and empirical generalizations laced throughout with seemingly
ad hoc rules to take care of exceptions. No one has quantified these rules and
only a few attempts have been made to systematize them. Thus the difficulty
in eliciting rules of mass spectrometry from the expert lies only partly in the
clumsiness of the program; the primitive state of the theory certainly contri-
butes to our difficulty too. In our case, this problem has been compounded
by having the theory of mass spectrometry in two different forms in the
program: one in the prediction phase, and a less complex - but hopefully
compatible - theory in the planning phase. The implications of this added
difficulty will be discussed in Part 3.

The following dialog illustrates some of the difficulties we encountered at
the console, apart from machine troubles and programming problems. It is
not a literal transcript, but both parties to the actual dialog agree that it is a
fair condensation of some of the sessions in which they focused on the
PREDICTOR's theory of mass spectrometry. The sessions, typically, were one
or two hours long. Because much of the process depended on what the program
could do, both parties sat at a teletype tied to the PDP 10 time-sharing
system in which the LISP programs resided. The expert in this dialog is A,
the programmer is B, and meta-comments are bracketed.

First session

A: Since El Supremo and the rest want us to work on ketones, I guess we
should get started.

B: OK. Incidentally, why are ketones important?
A: Besides being very common in organic chemistry we also know something

of their mass spectrometry because they’ve been studied a lot.
B: What subgraph exactly will cause a molecule to be classed as a ketone?
A: The keto, or carbonyl, radical. That is -C=O (noticing B'S puzzled

look).
B: Then all of these are ketones?

CH3--CHz--C=O-R
CH3-C==O-R
H--C-O-R

A: Wait a minute. The first two are ketones, but the last one is a special
case which we should distinguish in the program. It defines the class of
aldehydes.

S 257

MACHINE LEARNING AND HEURISTIC SEARCH

B: So can we formulate the general rule that a ketone is any molecule
containing C-C=O-C (thinking of the LISP list ‘(C(2 O)(l C)

(1 C))‘>.
A: That’s it.
B: Now what mass spectrometry rules do you have for ketones ?
A: Three processes will dominate: alpha-cleavage, elimination of carbon

monoxide from the alpha-cleavage fragments, and the McLafferty re-
arrangements.

B: OK. I wrote those down - now tell me exactly what each one means.
Start with alpha-cleavage - do you mean the bond next to the heteroatom?

A: (Digression on notation - often alpha-cleavage would mean this bond,
but not for mass spectrometry.) . . . Here alpha cleavage is cleavage of
the C-C==0 bond, i.e., cleavage next to the carbonyl radical - on both
sides don’t forget.

B: All right. That’s an easy rule to put in (translating to a new LISP function
which defines alpha-cleavage as cleavage which results in a fragment
(i.e., a list) whose first atom has a non-carbon atom on its property list).
Shall we say the peaks are always high?

A: That will do as a start. We don’t really pay much attention to intensities
just as long as the peaks show up.

(Reasons why exact intensities cannot be computed are explained briefly - B’s
interpretation is that chemists just don’t know enough about them.)
B: Now let’s get on to the second process - loss of carbon monoxide from

the alpha-cleavage fragments. Would you write that out in detail?
Exactly what happens to the fragment CH3-CH2-C=0 for instance?

A: Let’s see, that is mass 57. You will see a high 57 peak for this fragment
and you’ll also see a 29 peak because of this process:

57 --co>
CH, - CH, (m/e = 29)

T CH,-CH, C=O-CH,-CH,

B: Is that all there is to it, just drop off the C==O from the fragment (thinking
of making a second call to the LISP function which breaks bonds and
returns fragments). Does this happen in every case ?

A: Yes it’s that simple.
B: What about the intensities of these new peaks ?
A: Well, as far as we know they’ll be pretty strong all the time. Let me

check some spectra here. (A looks through a notebook containing some
mass spectra of simple ketones to check on the relative abundance of
alpha-cleavage minus 28 peaks.) Well some of the time they’re not
recorded below mass 40 so it’s a little hard to say. But it looks like the

258

BUCHANAN, SUTHERLAND AND FEIGENBAUM

alpha-cleavage minus 28 peaks are about half as strong as the alpha-
cleavage peaks in most cases.

(A and B digress on the generality of the process; A thinks of the chemical
processes, while B thinks of their LISP representation.)

A: (Finally.) Now the last important process for ketones, and this also
holds for aldehydes too, is the McLafferty rearrangement. That is just
beta-cleavage with migration of the gamma hydrogen.

B: You lost me again. Would you write down an example?

A: Take the case we’ve been working with, but ‘with a normal propyl on the
one side. Here’s how we would show what’s going on:

CH, CH,

’ ‘CH
B

CH,-CH,-C
II

1
I 2\

CH,-CH,-C
I

?< ,CH2
OH
+

‘H’
m/e = 100 m/e = 72

B: I guess I still don’t understand. Would you mind going through that
step by step?

A: We can’t really say what the sequence of events is, just that from the
molecular ion of mass 100 you get another ion of mass 72 -the McLafferty
rearrangement is just one way of explaining how that happens.

(Digression on how chemists can be confident of what the process is, including
some discussion of deuterium labeling, and meta-stable transition peaks.)

B: Suppose we wanted to tell the program about McLafferty rearrange-
ments, as I guess we do. What do I tell it in this case?

(A and B work out the details step by step as best they can. Both A and B

suffer from B’S lack of experience.)

B: Let’s see if I have this straight with another example.

(B picks an example which is too difficult for the first approximation to the
rules which he understands at this point. This leads to a lengthy discussion
of the conditions under which just one McLafferty rearrangement will occur,
and conditions under which a ‘double McLafferty’ will occur. At the end,
B’S most valuable possession is a piece of paper on which A has sketched
several examples with cryptic notes. B promises to program these three rules,
knowing full well that he won’t get them right the first time but knowing that
it will be easier for A to correct specific errors than to understand everything
at once. A promises to review the published spectra of simple ketones to
come up with some closer estimates of the relative intensities of the peaks
resulting from these processes.)

259

MACHINE LEARNING AND HEURISTIC SEARCH

Second session

B: The program and I are a little smarter than last time. But we both need
some help. Let me show you what it does with a few specific examples.
(B calls the program, and types in a few examples.)

(At this point, A looks at the examples and their corresponding entries in the
notebook of actual mass spectra. As he looks he diagrams the processes -
typically all processes for a molecule are superimposed on the graph structure
of the molecule, with arrows pointing out of the main graph to the graphs
of ‘daughter ions’.)
A: In all these cases the alpha-cleavages are pretty good, the alpha-cleavage

minus 28 peaks are OK most of the time, but I don’t understand what the
program is doing with McLafferty rearrangements. Also, there are a
couple of things that I didn’t mention last time - I remembered them as I
reviewed the ketone literature last night; so naturally the program
doesn’t know about them.

B: Let me write these down.
A: Two things: there is a difference in relative abundance of the alpha-

cleavage peaks depending on whether it is major alpha or minor alpha,
and second, very often you will see a McLafferty plus one peak after the
McLafferty rearrangements.

B: Let’s come back to those after you’ve told me what is wrong with the
program as far as it goes.

A: (Looking at the examples run by the program.) In the first case you have
the alpha-cleavage and alpha minus carbon monoxide peaks. But what are
these others ?

B: Let’s see. (B inputs the example again with a switch turned on which
allows him to see which major functions get executed and what their
results are.) The program thinks it can do a double McLafferty rearrange-
ment - isn’t that right?

A: It should do one McLafferty rearrangement, but I don’t see the right peak
for that. Here is the one it should do (sketching it out). It looks like
you’ve tried to do something quite different.

(After much time the errors are traced to a basic misunderstanding on B’S
part and some programming errors.)
B: Well I guess I’d better take care of those things before you look at more

examples. Perhaps I can add those other things you mentioned earlier.
What’s this business about major alpha and minor alpha?

A: It is just a way of bringing the intensities predicted by the program more
in line with the actual intensities. In these examples the major alpha-
cleavage is the alpha-cleavage in which the larger alkyl fragment is lost.

(A sketches several examples to illustrate his point.)
B: What sort of general principle defines the minor alpha ?
A: The larger alkyl fragment lost.

260

BUCHANAN, SUTHERLAND AND FEIGENBAUM

(B agrees to put this in the program after getting it clear. A new LISP
function is mostly conceptualized by now. Within a few months, however,
some poor results were traced to this form of the principle, so it had to be
reformulated to consider more than merely the size of the fragment.)
B: Now what about the other thing - the McLafferty-plus-one-peaks?
A: Well, we don’t know much about it, but it seems that in almost all cases

where you see a McLafferty rearrangement peak you also see a peak at
one mass unit higher. Of course we can’t say where the extra mass comes
from, but it doesn’t really matter.

B: Suppose the program just sticks in the extra peak at x+ 1 for every x from
a McLafferty rearrangement?

(B’S suggestion is motivated by the existing LISP code. The only time the
program knows it has a McLafferty peak is inside one function. After a brief
discussion of this, both A and B decide that the next step is to get the program
to make more accurate predictions. The discussion switches, then, to adding
this ketone information to the planning phase of the program.)

After deciding upon an interesting class of organic molecules, such as
ketones, ethers, or amines, the first step toward informing the program about
the mass spectrometry theory for that class is to ask a mass spectroscopist
what rules he generally uses when considering molecules of the class. His
first answer is that he expects specific fragmentations and rearrangements to
dominate the entire process, with different mass numbers resulting in dif-
ferent contexts. He expects just four processes to explain all significant
peaks in the mass spectra of acyclic ketones: (1) cleavage next to the C-0
(keto) group, i.e., alpha-cleavage, (2) loss of carbon monoxide (CO) from
the ions resulting from alpha-cleavage, (3) the rearrangement process known
as the ‘McLafferty rearrangement’ (migration of the gamma hydrogen to
the oxygen with subsequent beta-cleavage), and possibly (4) addition of a
proton to ions resulting from McLafferty rearrangements. The last process
is given far less weight than the first three, seemingly because there are still
too many exceptions to put much confidence in it. But it is still useful, enough
of the time, to warrant inclusion in the list. It is impossible to identify a
process with any specific mass number because these processes result in
different spectral lines when applied to different structures. For example,
alpha-cleavage (next to the C-0) in C-C-C-C-C=O-C-C results
in peaks at mass points 57 and 71 while in C-C-C-C-C-C=O-C-C
the alpha-cleavage peaks are at mass points 57 and 85.

These four rules were put into the PREDICTOR’S complex theory and, in
a different form, into the rough theory of the planning stage. The problems
we encountered with these rules are typical of three fundamental problems
we have learned to expect: (1) unanticipated concepts require additional
programming, (2) counter-examples to the first rules force revisions, and
(3) a false start leads to a change in strategy.

261

MACHINE LEARNING AND HEURISTIC SEARCH

The first difficulty is just a variation on the old adage ‘Expect the un-
expected’. In our case one root of this problem is lack of communication
between expert and non-expert. Because the expert tries to make his explana-
tions simple enough for the layman he leaves out relations or concepts which
very often turn out to be important for the performance of the program.

Initially the PREDICTOR’S theory treated each cleavage independently
of the others. But the introduction of the concepts of major and minor
alpha-cleavages destroyed this independence and forced revisions on the
program. Since the expert measured the relative abundance of minor alpha-
cleavage peaks in terms of the major peaks, it was essential to calculate the
abundance of the major alpha-cleavage peaks first. The technique for hand-
ling this was to introduce a switch indicating whether the major alpha-
cleavage had been encountered yet (with appropriate tests and settings in
various places). The underlying reason for using this technique rather than
another was to plug the hole as quickly as possible (and as a corollary to fix
things with a minimum of reprogramming).

In the planning stage, the anticipated form of a rule was a list of peaks at
characteristic mass points (where these could be relative to the molecular
weight). But in order to identify alpha-cleavage peaks in ketones the program
needed to find a pair of peaks at masses xl and x2 which satisfied the relation
xl +x2 = molecular weight + 28. So the program was extended in two ways to
account for this: first, a LISP function was allowed to stand in place of an
x,y pair as an acceptable rule form in the table of planning rules and, second,
a function was added to the set of available rules. The function looks for n
peaks xl,. . ., xn which sum to the molecular weight plus k, where n and k
are different for different functional groups (n=2, k= +28 for ketones).

The second fundamental difficulty in this whole process has come after the
additional programming was completed to take care of new concepts, when
we are in a position to try out the programs on real data. Typically these first
trials uncover counter-examples to the initial set of rules : we have often been
surprised at the low quality of the inferences on this first pass. For example,
we quickly found that the theoretical ketone rules did not always hold for
methyl ketones, i.e., for structures containing the radical CH3-C&O. The
alpha-cleavage on the methyl side produced a much weaker peak than was
originally expected, and methyl ketones often failed to show significant
McLafferty rearrangement peaks, contrary to expectations. Thus it was
necessary to alter the original rule that both alpha-cleavage peaks for ketones
must be high peaks, to allow for the virtual absence of the peak corresponding
to loss of the methyl radical. Also, because of the methyl case it was neces-
sary to alter the conditions which determined the strength of McLafferty
rearrangement peaks in ketones.

Experimental mass spectra often contain peaks which the theory either
cannot account for or would have predicted were absent and the spectra
often fail to show peaks where the theory predicts there should be some.

262

BUCHANAN, SUTHERLAND AND FEIGENBAUM

Because of this, the first attempts to use almost strictly theoretical rules in
the context of real data often reveal counter-examples to the rules. A
theoretical chemist, however, wants to sweep away these discrepancies - we
have heard such comments as ‘typing error’, ‘recording error’, ‘impure
sample’, ‘insensitive instrument’, ‘uncareful operation of the instrument’,
and so on. In tracking down the source of the discrepancies we first check
the original data to see that the computer has looked at what we wanted it to.
Occasionally, our friends have even re-run samples in their own laboratory
to check the reliability of the data. But our limited experience indicates that
the data are seldom in error: it is the theory that needs more work.

From the chemists’ point of view, the dialog process is also helpful for
discovering gaps in the theory. Only when they started stating their theoretical
rules as precisely as the computer program demands did they realize how
little their theory of mass spectroscopy says about some simple classes of
molecules. For example, when considering the class of amines, a chemist
wrote out 30 interesting amine superatoms* which he believed exhausted the
possibilities. A program which was developed later to generate superatoms
convinced him there were, in fact, 31 possibilities. Even Professor Carl
Djerassi, author of a comprehensive book on mass spectroscopy, terms his
exposition ‘woefully inadequate’ in places because of the gaps discovered in
the computer model. (Research is underway to fill these gaps.)

Making a false start is the third type of problem, which is usually dis-
covered only after a few iterations of examining new results and patching
rules. Because this requires backtracking and reprogramming, it is painful to
realize that some early decisions were bad in light of subsequent developments.
We have had courage enough to label only a few of our decisions as false
starts. For example, in the planning phase we quickly got into trouble with
identification rules for ether subgraphs by over-specifying the subgraphs.
We had successfully attacked a previous class of molecules (ketones) by
dividing the class into an elaborate hierarchy of subgraphs, each with its own
set of identifying rules. But this approach was not transferable to the new
class, apparently because the mass spectrometry of ethers follows a different
pattern. By the time we had defined rules for C-O-C, CHz-0-CHz,
CHs-0-CH2, and CHs-CHz---0-CHz we were no longer able to make
sound inferences. Thus it was necessary to start at the beginning and define
a less hierarchical, broader, and smaller set of ether subgraphs.

Typically it has taken weeks of interaction with a chemist at a console to
proceed past the first two difficulties, never knowing whether we were
making a false start. However, the iterative process itself is not finished when
* As readers of the Machine Innfelligence 4 description of HEURISTIC DENDRAL will
remember, a superatom is a structural fragment which is treated as a single unit. For
example, when given the amine superatom -CHr-NH-CHs, the program will use
this structure as an atomic element without considering any structural variants of it
such as -CHa-CHz-NHz. Thus several atoms in the graph can be replaced by a
single superatom, at a considerable saving for the STRUCTURE GENERATOR.

263

MACHINE LEARNING AND HEURISTIC SEARCH

a set of rules is found which seems to ‘do the right thing’, Because of the
number and the complexity of the subgraphs we often run into trouble
because we do not have the patience to grind out the consequences of the
inferences which the planning phase makes. For many examples of spectra
our rules excluded so many subgraphs that, even though the program was
properly instructed to put a particular superatom into every structure
generated, it could not generate any structures at all. In these cases we have
had to weaken the identifying rules still more - with the result that we often
let in incorrect classes of molecules to insure that we never excluded the
correct ones.

The end of the iterative process to establish planning rules for a class of
molecules comes when we have a set of rules which correctly identifies
substructures contained in all available examples of mass spectra for that
class, e.g., for all acyclic ethers. Similarly, the end of the process to establish
the deductive rules comes when the chemists satisfy themselves that the
predicted mass spectra agree in significant respects with the published mass
spectra of a broad range of examples.

It should be mentioned that we recognize the need to clear up the bottle-
neck of getting new information into the computer. Here, as elsewhere, many
alternative designs are open to us. For instance, we could get rid of the
‘middle man’ in the information transfer by educating a programmer in
mass spectroscopy or by educating a chemist in LISP. Or we could replace
the middle man with a program designed to perform the same function as B
(the layman/programmer) in the dialog above. In effect, we have been
moving slowly in all three of these directions at once. But what we would
most like to pursue is the design of a program to elicit information from an
expert who is not also a programmer. (This seems especially attractive to the
real-life B, needless to say.)

In many areas of science - especially the rapidly expanding frontier areas -
the rules which will someday be incorporated into a unified theory exist only
in an uncodified morass of recent papers and unpublished notes, and in the
heads of researchers on the frontier. Because of the number and complexity
of the rules, they are easy to forget, especially so in a collection that is messy.
The process of codifying this collection is thus both tedious and important.
For this reason automation of the dialog is of general interest: B is not the
only one who stands to gain.

Because B’S function is more than translating from chemical language to
LISP, the program must be more than a compiler. Writing the compiler and,
before that, designing a rich enough chemical language, seem unavoidable in
the general problem. B does even more than an interactive compiler which
asks for clarifications of statements. B also asks questions to fill in gaps, he
uses analogies (and occasionally even sees one), he constructs possible
counter-examples, and he puts new information into all parts of the system
which can use it.

264

BUCHANAN,SUTHERLAND AND FEIGENBAUM

Each one of these additional functions adds another level of complexity to
the problem of automating the dialog. Yet the language of any particular
science may be sufficiently formal and constrained that the whole problem
is still tractable. In our task area these problems may be as well in hand as
anywhere. The next few remarks will briefly show how they are manifested
in the DENDRAL system. B'S experience has been that the expert can easily
overlook a logical possibility, for example, one of all possible permutations
of carbon, hydrogen, and nitrogen atoms in a terminal radical. Because of
the exhaustive STRUCTURE GENERATOR within the program - in fact, at
the heart of the program - it is possible to enumerate all structures within a
specified class. Thus it is possible to use a program to check for gaps in any
list of structures provided by a chemist. An important but non-trivial
problem, then, is finding heuristics which will select ‘interesting’ missing
structures, that is, structures the chemist would like to know he missed.

Frequently the discussion of a new functional group will call in analogies
with what has been discussed before. ‘Amines are like ethers’, was one specific
remark that B had to make sense of; a smart program should at least know
what questions to ask to make sense of the analogy. It will take a much
smarter program to recognize these analogies itself. The point is that the
dialog will move much faster if the program can at least use analogical
information.

Constructing counter-examples may often require a thorough understand-
ing of the theory. But B has been of some help to A even though he has only a
little knowledge of mass spectrometry. The dialog program might easily
watch to see what kinds of cases the expert needs to patch up. This strategy
now leads B to ask ‘But what about the methyl case?’ for every set of rules
that doesn’t explicitly consider methyls. And, surprisingly, this reminder is
often helpful.

Finally, the ‘middle man’ in the process is sometimes expected to put
pieces of theory in appropriate places of the program, and sometimes to
shift information from one place to another. The difficulty here, of course, is
that different parts of the program require different representations of the
knowledge: the planning phase is written in terms of transforming spectral
lines into structural pieces while the PREDICTOR is written for transforming
structural pieces into spectral lines. As the theory becomes more complex
and as the representations diverge, it becomes more difficult to assess the
consistency of the different representations. Human intelligence now decides
the questions of where to put new information, how to represent it, and how
to make it consistent with other statements. These questions will be discussed
in the next section. Let it suffice here to say that a dialog routine cannot be
blind to how and where the information will be used.

In sum, eliciting a theory from an expert is a tedious process that is worth
automating. It has been our key to the wealth of knowledge not yet accessible
in textbook packages. And it has benefited the scientist since it provides a

265

MACHINE LEARNING AND HEURISTICSEARCH

means of codifying a loose collection of empirical generalizations into a
theory. Automating half of the information transfer should add confidence
in results as well as speed to the process. Our concern is not so much building
a program which teaches itself mass spectrometry as building one which has
the capacity to be taught.

3. GENERAL PROBLEMS OF DESIGN, SEARCH, AND
REPRESENTATION

Behind the discussion of the information transfer process is the unquestioned
assumption that the performance of the HEURISTIC DENDRAL system
depends critically on the amount of knowledge it has about mass spectro-
metry. Thus it is necessary to be able to add more and more theory to the
program in the easiest possible way - through some such process as the
dialog just discussed.

In addition to the amount of information the system has, the performance
of the system also depends upon how and when that information is used
during the problem solving process. Writing a program to use the theory of
mass spectrometry presupposes making a choice about how and where to
reference the theory. That is, it presupposes choosing one design for the
system over others, choosing an efficient search strategy, and choosing
appropriate representations for the theory.

In systems science the best design is the one which maximizes the stated
objective function. Thus an objective function provides a measure of per-
formance for any design of the system, when the function is available.
Unfortunately, there is no epistemological theory which allows us to define
one objective function and alter the design of HEURISTIC DENDRAL
systematically to bring its level of performance closer and closer to the
objective. Our criteria for evaluating the performance of the system are
admittedly intuitive: we say that a design, manifested in a computer program,
is better the less time the program takes, the more compact the program is,
and the more problems it can solve. (Also, an intuitive concept of elegance may
lie below the performance measure as a means of judging between programs
which seem to perform equally well with respect to the other measures.)

The larger problem of designing the system efficiently cannot be ignored
by anyone writing complex computer programs. But design questions involve
more than just programming considerations. As with other large programs,
HEURISTIC DENDRAL is broken into segments, with each segment expected
to contribute to the solution of the whole problem in such a way that the
performance of the entire system is efficient over a broad class of problems.
If we were given just one design to implement on a computer, the questions
would be questions of coding and running efficiency. But we have been
forced to realize that our first choice of design was not the best one after all,
that we must concern ourselves with choosing among all possible designs for
systems which perform the same task.

266

BUCHANAN, SUTHERLAND AND FElGENBAUM

Apart from the fact that no completely satisfactory measure of performance
is forthcoming, there remains a problem of relating the performance of the
components of the system with the performance of the whole system. In
some systems the parts are completely independent; thus maximizing
the performance of each part results in maximizing the performance of
the whole system. But in the case of this program, as in other complex
systems, the components are so interrelated that the best total system is
different from a collection of the ‘best’ independent parts, because the
measure of each part’s contribution must bring in the goals of the other
parts.

The problem of where to put theoretical knowledge into the system is one
aspect of the design problem which is of particular interest to us. There are
several components of this system which might profit from access to the
theory of mass spectrometry if we chose to represent the theory suitably for
each part. But we must balance benefits to a part of the system against cost
to the whole system. For example, the addition of theory to the planning
stage increases its contribution, and benefits the total system, as mentioned
earlier, with only a small increase in program space. Approximately three-
quarters of a second spent scanning the data to make a rough plan resulted
in the saving of ten or more minutes of computer time in the successive
stages of the program. By our intuitive measures of good performance, we
took that as an improvement, as long as the reliability of the later parts was
not undermined by hasty planning. However, in the case where we gave the
planning program identifying conditions for thirty amine subgraphs we did
run into serious time trouble, but not where we expected it. We expected
trouble to show up in a slow-down of the planning program, when it showed
up at all. But in the amine case, the slow-down came in the GENERATOR
because of the number of generation constraints added by the planning
program: three to eight subgraphs, typically, would be added to GOODLIST
and the rest of the thirty subgraphs added to BADLIST. The generator just
had too much information to process. Our solution was to reduce the number
of BADLIST additions, since (a) this was the major source of trouble in the
GENERATOR, and (b) we could be assured that we never deleted correct
answers this way. Although we did increase the number of wrong answers
from the GENERATOR, they would be ruled out when the predictive theory
of mass spectrometry was applied later.

Woven through the pattern of alternative designs for the system are
alternative search strategies which are available to the system designers. In
the designs actually programmed, the over-all search strategy has been to
define a subspace, generate all hypotheses in that subspace, and test each,
But at least two different strategies are available to the program: A, test each
node in the subspace during generation (i.e., test partial hypotheses), and
B, generate one candidate hypothesis then use a GPS-like difference-reducing
strategy to generate better hypotheses. Both of these alternatives will be

267

MACHINE LEARNING AND HEURISTICSEARCH

discussed as a means of bringing out some of our design problems, and as a
weak means of justifying the strategy used in the program.

The alternative strategy, A, has, in fact, been tried in one version of the
program with only incomplete results so far. In the simplest application of
this strategy, the generator consults the deductive theory at each node in the
generation tree to determine whether the data indicate that an unproductive
branch has just been initiated. That is, the theory is consulted to determine
which partial hypotheses are not worth expanding, Unproductive branches
are pruned, another node is added to each partial hypothesis, and the test
is repeated. For example, part way down the search tree one branch (partial
hypothesis) might be an oxygen atom with unbranched carbon atoms on
either side (-CHz-0-CHz-), and the next move for the GENERATOR
might be to attach a terminal carbon to one of the carbons resulting in the
partial hypothesis -CH2--0-CHz-CH3. Consulting the theory will tell
the GENERATOR that this is a fruitful branch only if the data contains peaks
at 59 and the molecular weight minus 15 (M - 15), otherwise the branch
would be pruned at this point. Because of the large number of nodes in the
unconstrained hypothesis space, it was quickly evident that this strategy
could be applied in this simple way only when the planning phase had
indicated a relatively small subspace.

One reason why this alternative strategy, A, will not work well in this task
area is that the theory of mass spectrometry in the program, as in the heads
of chemists, is highly context-dependent. The theory can say very little about
the behavior of isolated atoms or small groups of atoms in the mass
spectrometer without knowing their environment in the molecule. An ethyl
group, (CHs-CHz-) for instance, usually produces some small peaks in
the spectrum at masses 29 and M-29, but when it is adjacent to a keto
radical (C-0) it will produce strong M -29 and 29 peaks (depending, of
course, on the structure attached to the other side of the keto radical). When
an ethyl is attached to an oxygen in an ether (CHs-CHz-0-), on the
other hand, the theory predicts a peak at M- 15 but not at M-29, and no
peak at mass 29. More importantly, the theory can say very little about
pieces of structure which do not contain at least one terminus. But the canons
of structure generation begin with a node at the center of the structure,
working down toward the termini. The theory can say almost nothing, for
example, about a chain of carbon atoms in the center of a molecule without
knowing what is at the ends of the chain. In short, it must know the context.

For any class of problems where it is difficult to validate partial hypotheses,
the node-by-node search strategy is not the best of alternatives. The current
design with no theory used inside the GENERATOR (and thus no node-by-
node testing) is superior to the node-by-node test strategy with respect to
confidence, and almost certainly with respect to time,* Only after branches

* Those familiar with earlier versions of the HEURISTIC DENDRAL system may recall
that a rough deductive test was once applied at each node, using what we called the

268

BUCHANAN,SUTHERLAND AND FEIGENBAUM

of the search tree terminate, i.e., when complete chemical structures are
generated, can the theory be called with confidence, for only then is the
context of each piece of the molecule completely determined. But the inter-
mediate calls to the theory will then either be incorrect or a waste of time.

Adding one or both of two levels of complexity to the node-by-node
testing strategy, A, however, may make it competitive with the current test-
at-the-end strategy for our problem. First, we can add some meta-theory
to the testing routine or, second, we can reorganize the GENERATOR to make
the theoretically significant nodes come at the top of the generation tree.

(A 1) Adding meta-theory to the testing routine is relatively simple since
it is possible to say a priori that the theory is uninformative or perhaps
misleading on certain classes of partial structures. Thus the first test on a
partial hypothesis is to determine whether the theory can say anything about
it - whether this partial hypothesis warrants the expense of calling the full
deductive theory. In this way, the number of calls to the theory is considerably
reduced. The moral seems to be that a little meta-theory goes a long way.

(AZ) Reorganizing the STRUCTURE GENERATOR is a second way to
maximize the pruning ability of the deductive theory in node-by-node
checking. As mentioned earlier, the canons of generation initiate each
structure at the center so that generation is from the center out to the termini.
So in most cases near the beginning of the generation process the testing
routine provides no information which allows pruning. Testing begins to
pay off only after termination of one of the branches of the partial structure.
By starting the generator at a terminal atom (instead of at a central atom) the
deductive theory could often prune very effectively at the top of the search
tree where it is most desirable. One reason why we have not pursued this
strategy, however, is that we now have no way to decide which end of the
structure will make the most informative terminal radicals. In those cases
where the oxygen of an ether molecule, for example, lies close to one end and
far from the others, as in CHs-CHz-O-CH2-CHz-CHz-CH2-CHs,
the savings would be positive for the terminal atom near the oxygen, but
negative for the other choice.

(B) Another completely different search strategy which the program might
have used is a cps-like difference-reducing strategy, mentioned above as the

‘zero-order theory of mass spectrometry’. The simplicity of the tests was both the
beauty and the downfall of the zero-order theory. Because it was not a complex theory,
the test was very cheap, and thus could be applied to every node. But it was such an
oversimplified theory that it very often returned incorrect answers to the tests. We have
not abandoned hope of finding heuristics which indicate circumstances under which
cheap tests are reliable. We are also asking ourselves how to call the complex theory
efficiently, as described in (~1) and (AZ) of the text to follow. Just asking questions of
this sort, and asking how to incorporate their answers (if found) into the LISP program,
incidentally, have led to a successful reformulation of the program. The new code,
designed to allow reference to a more general theory than the zero-order theory, runs
about twice as fast with about three-fourths the number of instructions.

269

MACHINE LEARNING AND HEURISTIC SEARCH

second alternative to the current test-at-the-end strategy. The STRUCTURE
GENERATOR could construct any molecule as an initial hypothesis - prefer-
ably within some constraints set by a smart planning program - and the rest
of the time would be spent finding differences between the predicted and
actual mass spectra and then reducing those differences by changing the
structure of the candidate. Chemists find this suggestion attractive because
they use somewhat the same strategy in analysing mass spectra, since they are
without the benefit of an exhaustive GENERATOR. However, they have
been unable to articulate a measure of progress toward the goal or a descrip-
tion of the process of finding relevant differences.

Another reason the GPS strategy does not fit our problem is that unless
the program keeps a precise record of hypotheses already considered, it will
have trouble avoiding loops. The structural changes would be made in
pieces, in response to the salient differences at any level. Thus it is quite likely
that a sequence of changes, each meant to reduce one of a set of differences,
would soon be in a loop because changing one piece of structure to reduce the
one difference might well introduce other differences in the mass spectra.

Another important reason why the GPS framework is not suited for this
problem is that the chemist does not necessarily work incrementally toward
the goal, as GPS does. He may add a feature to the hypothesis at one stage
which seems to introduce more differences than it reduces. And then, because
of that, he may finish the problem in a few swift strokes. For example,
shifting the position of a functional group in a candidate molecule may explain
some puzzling spectral lines but introduce puzzles about other lines that the
previous structure had explained. This strategy of temporarily retreating
from the goal, so to speak, is also common in synthetic chemistry and in
theorem proving. In both cases, expressions (or molecules) are introduced at
one stage which are more complex than the one at the previous step, because
the remainder of the problem-solving activity is thus simplified. In other
words, there are certain problems for which step-by-step movement toward
a goal is not the best strategy; mass spectrum analysis appears to be one of
them.

Although the two alternative search strategies A and B introduce new
difficulties, modifying the current strategy may well improve the program
without adding serious problems. One extreme is to use a powerful enough
theory in the planning stage to produce only a single unambiguous hypothesis :
that is, plan the hypothesis generation process so carefully in light of data
and theory that just one structure meets the constraints. This means adding
much more new theory to the planning program. The planning stage now
has a table of interesting and relatively common subgraphs each coupled
with a set of identifying conditions. Pieces of structure for which the theory
has too little context to identify their presence or absence are left out of the
table entirely. The rest of the table is organized hierarchically.

However, using a powerful enough theory requires enumerating whole

270

BUCHANAN,SUTHERLAND AND FEIGENBAUM

molecules (because the theory cannot be applied unambiguously to pieces
of molecules out of the total context), resulting in an enumeration which
would be far too large to catalog or search. On the other hand, enumerating
subgraphs - or pieces of molecules - in a much more manageable list leaves
ambiguities in the ways the pieces can be put together in a complete molecule.
That is, if we want to plan carefully enough to isolate exactly one structure
for any number of atoms, the entries in the table must specify the total
context for each piece of structure. In this case the planning program must
do a table look-up on spectrum-molecule pairs, obviating the need for the
STRUCTUREGENERATOR or PREDICTORat all.(Muchworkintheapplica-
tion of computers to analytic chemistry has this flavor.) Cataloging anything
less than whole structures will result in looser constraints, since some
contextual information must be omitted, and thus will result in generating
more than one whole structure in those cases where there is more than one
way to put the identified pieces together.

While we cannot rigorously justify our design decisions, and in particular
our decision to use one search strategy over another, we have been able to
explore some alternative designs. Perhaps more importantly, we have found
that the HEURISTIC DENDRAL system is fertile ground for exploring these
general problems.

Another class of problems which the system forces on us has been called
‘The Representation Problem’. There appear to be several problems under
this rubric: choosing a convenient representation for the theory, deciding
when to proliferate representations, deciding when two representations are
consistent, and switching from one representation to another. None of these
appears to warrant the title ‘the problem of representation’ any more than
the others; they all require solution in any system which admits any of them.

Initially, the only theory of mass spectrometry of any complexity in the
program was the deductive theory in the PREDICTOR. The most crucial

aspect of the representation problem at that time - and probably the only
aspect we saw - was choosing a convenient representation. And then, also,
we held a simplistic view of what made a representation convenient. We
meant, roughly, a representation that was easy to code and write programs for.

Since then it has become obvious that convenience is also conditional on
the persons adding statements to the theory, as discussed in the second
section. For the sake of communicating with the expert, for example, it may
be necessary to cast the theory in terms of bonds and atoms at the level of
the dialog, but then transfer those statements to a representation in terms of
electron clouds and charge localization for the efficient operation of the
program. That is, there may be a need for two representations even though
there is only one theory. With only one representation it is very possible that
either communication with the expert or execution of the program will
become cumbersome. On the other hand, separating the internal representa-
tion from the one which is convenient for communication makes it more

271

MACHINE LEARNING AND HEURISTIC SEARCH

difficult to find mistakes in the program and to explain mistakes to the expert
who must ultimately correct them.

With the addition of planning to the program, it was expedient to introduce
a new representation of mass spectrometry theory which could be read
easily by the planning program. Even though all of the information was
already in the PREDICTOR'S theory, it was not in a form which could be
easily used for planning. For example, the PREDICTOR'S theory indicates
that a pair of peaks (at least one of which is high) will appear in the mass
spectra of ketones as a result of breaks on either side of the keto (C==O)
group. Thus, because of the appearance of C=O (mass 28) in each resulting
fragment, the peaks will add up to the molecular weight plus 28. The theory
in the planning program also knows this, but it uses the theory in reverse.
The planning program looks for a pair of peaks in the data (at least one of
which is high) which sum to M+28 as a necessary condition for the ap-
pearance of the keto group. That is, the PREDICTOR uses structural informa-
tion to infer pieces of the bar graph, while the planning program uses bar
graph information to infer pieces of structure.

Duplication of information may be the preferred means to processing
efficiency, even at an obvious cost in space, as it almost certainly is in this case
where conditionals are read left to right in the prediction (deductive) phase
and re-representations are read the other way in the planning phase. Even
more critical than the space versus processing time question, though, is the
question of consistency. The system has no way of checking its own theories
for inconsistencies. Worrying about the consistency of different representa-
tions of the theory may be considered a waste of time, but we see this as a
serious issue because of the complexity of the body of knowledge about mass
spectrometry. We even have to be careful now with the internal consistency
of each representation, because of complexity. For example, the rules of the
planning program have occasionally put a subgraph on GOODLIST and a
more general form of that subgraph on BADLIST: to say something like
‘this is an ethyl ketone but it is not a ketone’. Our solution to this particular
problem avoids the consistency issue by allowing the planning program to
check only as far as the first ‘no’ answer in the family tree. In general, however,
because of the complexity of the theory, we are not confident that the pro-
grams are internally consistent, let alone consistent with each other.

The consistency problem would evaporate if there were just one representa-
tion of the theory which could be read by all parts of the system which use
the theory. But it may be unreasonable to expect to find one representation
which is suitable for all purposes. Another solution to the consistency
question is to add either (1) a program which can read both representations
of the theory to check for inconsistencies, or (2) a different representation
to which modifications will be made and a program which writes the other
two representations from the third after each set of changes. At the least,
the consistency of the whole system can be checked empirically by running

272

BUCHANAN,SUTHERLAND AND FEIGENBAUM

examples. It may well be that this is also the best that can be done; there may
be no logical proof of consistency for this vaguely stated body of knowledge.
In any case, the system should be designed in such a way that the oppor-
tunities for introducing inconsistencies are minimized.

If the consistency problem is dismissed by disposing of all but one repre-
sentation of the theory in a system, then the problems of representation become
vacuous for that system. When different representations of the same body of
knowledge remain, however, it is possible that switching from one to another
inside the program will be desirable. In this system, for instance, it would be
very desirable to be able to move information automatically from the
PREDICTOR'S complex theory of mass spectrometry to the planning pro-
gram’s theory. The convenience and consistency questions just mentioned
have directed attention to the benefits of switching representations. There are
at least two ways of carrying it out here. First, and more generally, if the
theory were suitably represented, for example in a table, a program could
conceivably move pieces of information from one place to another making
appropriate transformations on the way. This is very difficult for any complex
body of knowledge, though, since it is difficult to put it into a perspicuous
form and to write a program which can interpret it. The less general way of
moving mass spectrometry theory from PREDICTOR to PRELIMINARY

INFERENCE MAKER also appears slightly less difficult. In effect, the program
can be asked to perform a ‘Gedanken experiment’, i.e., to pose questions
about mass spectrometry and answer them itself without outside help. The
program already has almost all the necessary equipment for such an experi-
ment. The major power of the idea is that there is already a systematic
STRUCTURE GENERATOR for producing the instances of molecules of any
class, for example, all methyl ketones. Moreover, the STRUCTURE GENERA-

TOR can also produce the exemplars, or superatoms, which define the class.
The PREDICTOR tells what happens to each particular molecule in the mass
spectrometer. All that remains is a program to classify the predicted mass
spectra and find the common spectral features. These features are just
what the planning program needs to identify the class. In this way the
PREDICTOR'S theory is transferable to the planning program.

Much of our current effort is directed to just these points: set up one central
theory which the expert modifies and automatically move the new information
to appropriate places. This effort requires much reprogramming, some of
which is described in the next part of the paper, it requires improving the
communication with experts as described in the second part, and it requires
answering the critical design questions just discussed.

4. TABLE DRIVEN PROGRAMS AND RECENT PROGRAM-
MING CHANGES IN HEURISTIC DENDRAL

Parts 2 and 3 have discussed the problems of obtaining and representing
scientific theories for a computer program. Designing the actual computer

T 273

MACHlNE LEARNING AND HEURISTICSEARCH

programs to access the theory is another problem, which, fortunately, seems
easier to solve than the others. The general programming approach, adopted
after several trials, is summed up in the phrase ‘table driven program’. The
idea (which is worked out in detail in Donald Waterman’s program to
learn the heuristics of draw poker) is to separate the theory from the program
which works with the theory by putting specific items of theory on lists and
in global variables. Changing the theory, then, involves little actual re-
programming. This allows experiments to be carried out with different ver-
sions of the theory, a very useful feature when dealing with a subject which
is as uncodified as mass spectrometry.
A. The first of the DENDRAL programs to be written as a table driven
program was the planning program (PRELIMINARYINFERENCEMAKER)

which bases most of its operation on a list of names and their associated
properties. The planner has a list of functional groups and subgroups
arranged in family hierarchies, e.g., (A) ketone, (A 1) methyl-ketone, (AZ)

ethyl-ketone, etc. Associated with each group and subgroup is a set of
identifying conditions. The program picks the first main functional group on
its list and checks its identifying conditions against the given mass spectrum,
e.g., for the subgroup CZH~-C=O-CHz-C-CH, we have xl +x2=
M+ 28 (alpha cleavage) and 72 high (McLafferty rearrangement). If any
condition fails to be satisfied, the group and all its subgroups are ruled out -
their structures are put on BADLIST. If all conditions are satisfied, the
structure of this group is put on GOODLIST - a list of preferred subgraphs.
Then subgroups will be checked in a similar way. All groups known to the
program are thus considered either explicitly or implicitly. Modifying either
the list of subgroups or their properties will drastically affect the behavior of
the program. Yet all the theory of mass spectrometry in this program is
contained in one or the other place.
B. The STRUCTURE GENERATOR program has been table driven to a
smallextent; in particular, threelists, ORDERLIST, BADLIST, and GOODLIST,

function as tables which determine the structures which will be generated and
their order. ORDERLIST contains a list of all chemical atoms which the
program can use. Each atom has properties such as valence, weight, sym-
metries, etc. Removing an atom from ORDERLIST effectively removes it
from the domain of the STRUCTURE GENERATOR. The relative order of
atoms on ORDERLIST determines, to a small extent, the order of structures in
the output list. BADLIST is another table which controls output of the
STRUCTURE GENERATOR. If BADLIST is NIL, all topologically possible
structures will appear. Otherwise, any structure containing one of the
BADLIST subgraphs is pruned from the generation tree as soon as the
BADLIST item l3st appears. This does not change the generating sequence,
but rather eliminates structures from the unfiltered output list. GOODLIST

serves two purposes: it can determine the order in which structures are
generated and it can limit generation to a specified class of structures. Those

274

BUCHANAN,SUTHERLAND AND FEIGENBAUM

structures containing preferred substructures present on GOODLIST will be
generated first, while structures containing none of the preferred sub-
structures will be generated last or not at all if generation is to be limited.

One of the basic problems inherent in the STRUCTURE GENERATOR,

however, has been its rigid insistence on following the canons of DENDRAL

order as they existed four years ago when the program was written. These
canons specified the canonical form of a structure, and thus the implicit
generating sequence, by stating the following rules:

Count, degree, apical node, and afferent link are the attributes in decreasing
order of importance. 1 is lowest count, increasing integer values are higher.
The value of apical nodes follows ORDERLIST, usually C<N<O<P<S,
with superatoms added at the end. 1 is minimum degree, the highest
degree is the maximum valence of all the atoms on ORDERLIST. 1 is the
minimum link, 3 is the highest link.

These specifications were programmed into the STRUCTURE GENERATOR

LISP code in such a widespread way that changing even the allowable ranges
for attributes (let alone trying to change the order of attributes) required
many separate small programming changes. Thus, it was difficult to deter-
mine all the places to change the code whenever even slight variations of
generating strategy were desired.

The rigidity of the program in this respect made it very difficult to change
the generating order for structures. It had occasionally been suggested that
non-branching structures should be given preference, but such a suggestion
was difficult to implement with the former STRUCTURE GENERATOR.

This problem has now been overcome by a substantial reworking of the
STRUCTURE GENERATOR program. A basic change in operating procedure
made this possible. This is the evaluation, at each level of structure generation
where a node and link are picked and recursion is about to occur, of each
choice of partial structure, and a consequent ordering of choices in a plan
list. The program follows the DENDRAL canons through all values of node,
link, and degree, and makes a plan list of all possible ways to add the next
node to the emerging structure. It orders these plans according to plausibility
scores calculated by a single LISP function. Some plans may be eliminated
because of ‘implausibility’. Only then does the recursion take place, operating
according to a single one of these plans, and then the process is repeated for
the next node to be added to the emerging structure.

The result of this reorganization is a tremendous simplification of the
generating algorithm. Instead of having six functions to generate the complete
list of structures, two are now sufficient. Of the six functions (GENRAD,

MAKERADS,UPRAD,UPLINKNODE,UPCOMPNODE, and UPDEGNODE),

only two remain. The other four, whose jobs were to change a single structure,
have disappeared. Previously GENRAD constructed the single ‘lowest’
canonical structure which could be made from an empirical formula. This

275

MACHINE LEARNING AND HEURISTIC SEARCH

structure had to be ‘incremented’ by UPRAD many times in order to obtain
the entire output list. The current version of GENRAD does all this for itself
and returns a list of structures as its answer. Incidentally, this reduced the
size of the STRUCTURE GENERATOR by about 25 per cent, a substantial
saving; and cut execution time about in half.

This reorganization quickly caused us to notice that it would now be
relatively easy to make the GENERATOR into an almost completely table
driven program, by putting the DENDRAL canons (attributes and their values)
on a global list. This is now possible because the canons are mainly invoked
by the function GENRAD and only a few other utility functions. The new
idea is to form a global list of the form

((LINK 1 2 3) (NODE c N 0) (DEGREE 1 2 3 4))

which will be accessed during the process of making plans about how to
enlarge the structure that is being built. In the example of the list above, the
link is the least important attribute, and 1 is its least value; thus LINK=~
is always the first thing to be tried in generating structures. If, for some reason,
it was felt that highly branched structures with heteroatoms (non-carbon
atoms) near the center of the structure were the most likely, the revised
form of this global list might appear as

((DEGREE 4 3 2 1) (NODE 0 N c) (LINK 12 3))

or if desired, unbranched structures could be eliminated entirely by revising
the list as

((DEGREE 4 3 2) (NODE 0 N c) (LINK 1 2 3)).

This table driven program will have great use whenever some data or
some chemist’s special application indicate that structure generation should
be limited to a very specialized class of structures.
C. The PREDICTOR program is currently being revised in the form of a
table driven program. This will permit a great simplification in the process
of adding new chemical theory, as well as making the program easier to
understand and correct. One large part of the effort of re-programming the
PREDICTOR is in switching representations of structures. Previously, three
different representations of structures had existed there: the list notation
which is characteristic of the STRUCTURE GENERATOR (and the graph
matching algorithm which the PREDICTOR inherited), a variant of the list
notation with unique numbers assigned to the nodes of the graph, and a
connection list representation of structures. In the connection list representa-
tion the unique names of nodes are stored as global LISP atoms with
properties declaring the bonds coming to and from each atom. Five reasons
are given for switching to a complete connection list representation in the
PREDICTOR.
1. Keep the legal move generator simple. The primary motivation for using
connection lists was to represent bonds uniquely, because the legal move
generator in the PREDICTOR is of the form ‘move to the next bond and

276

BUCHANAN,SUTHERLAND AND FEIGENBAUM

decide whether it breaks’. In the connection list, the directedness of acyclic
chemical graphs is maintained with separate indicators for the links to other
nodes and the one link from another node. The list of links under the ‘from’
indicator for all nodes, then, is a complete and irredundant list of the links
in the graph. The list notation puts bonds and atoms in a hierarchy which
makes this process difficult.
2. Represent fragments uniformly. Since the PREDICTOR sometimes needs to
know what was connected to a new fragment over the broken bond, it was
necessary to keep track of the names of the atoms connected by that bond.
So connection lists were necessary even when the list structure of a fragment
was available. But the connection list representation of structures alone is
sufficient for these purposes.
3. Avoid building up and tearing apart list structures. All connections are
represented once and for all in the connection lists; temporary changes, e.g.,
the result of removing an atom and breaking a bond, can be represented by
temporarily ‘pushing down’ the appropriate properties. Previously, the
PREDICTOR built new list structures for each primary cleavage result and for
each result of rearrangements. Then each of these had to be searched for
such features as the number of double bonds one or two bonds removed
from any atom in the structure. Even the common function of assigning a
mass number to a fragment was messy in the list structure, partly because of
the branching list structure and partly because the number of implicit
hydrogens in the list structure had to be calculated each time.
4. Speed up graph matching. In the PREDICTOR, atoms in the list structure
needed node numbers in order to specify the places at which a match
occurred. This was essential because the secondary processes being modeled
in the PREDICTOR affect specific atoms. And the structure of the result is
important because the result is itself checked for important subgraphs.
Besides adding node numbers to the atoms in the list, it was also essential to
put all hydrogen atoms into the list explicitly each time a new fragment was
produced. Hydrogen atoms are often important conditions for the occurrence
of secondary processes. So the list structure was no longer easy to search with
the modified graph matching algorithm of the STRUCTURE GENERATOR.
A new algorithm has been written for the connection list representation.
5. Represent rings in the same notation as trees. Since circular lists are generally
undesirable, a fragment containing a ring could not be represented in the
same way as an acyclic fragment. Thus the functions which searched for
structural features could not be the same in both cases. Adding one additional
property to show the links which make the acyclic structure into a cycle
allow us to retain a list of unique bonds. At the same time, we can still find all
connections for any atom quickly.
D. Interaction and interdependence of the three sub-programs of HEURIS-
TIC DENDRAL must also be considered when writing and revising these
computer programs. Because of the size of the combined programs, it is

277

MACHINE LEARNING AND HEURISTICSEARCH

more practical to run them separately than to run them together. One
supervisor takes care of the interaction by having each subprogram write an
output file which is then the input file for the next phase of program operation.
The PRELIMINARY INFERENCE MAKER writes the file containing the
empirical formula and the GOODLIST and BADLIST to be used by the
STRUCTURE GENERATOR. That program, in turn, reads this file, and writes
another file containing the single output list of structures which it generates
according to the GOODLIST and BADLIST specifications. The PREDICTOR,
then, reads this file to obtain its input, and calculates a mass spectrum for
each structure in the file. If other tests such as an NMR prediction are to be
made on the candidate structures, the supervisor interfaces the appropriate
program to these others in the same way.

Although it is painful to rewrite a set of programs as large as those in
HEURISTIC DENDRAL, the cost of modifying old programs seems to increase
sharply as the number of new ideas increases. The primary motivation for
completely rewriting large portions of the LISP code is to increase the
program’s flexibility. The major emphasis is on separating the chemical
theory and heuristics from the rest of the code by putting chemical informa-
tion into tables.

5. CONCLUSION

A few general points of strategy have emerged from the DENDRAL effort for
designing a program which will explain pieces of empirical data. With regard
to the theoretical knowledge of the task domain in the program, we believe
that the following six considerations are important.
1. Convenient representation. As discussed in Part 2, the effort of eliciting a
theory from an expert can be alleviated by choosing a representation of the
theory in which he can converse easily. Although this may not be the best
representation for internal processing, our experience has been that it is
expeditious to write interface routines between the communication language
and the internal one, rather than force the expert to converse in the scheme
which suits the machine. This is also preferable to forcing the machine to
carry on its problem solving in the framework of the dialog.
2. Unzjied theory. For reasons of consistency, the theory (or set of facts, or
axioms) should be collected in one place in the program, with modifications
made to this unified collection. This is compatible with having different
representations of the theory for different applications, if this is desirable, as
long as there are lines of communication between the special representations
and the central one. If changes to the theory must be made by hand to every
special representation there is a strong possibility that inconsistencies will be
introduced between two representations which are intended to be equivalent.
Having just one central theory to change from the outside will greatly reduce
this possibility.
3. Planning. In this program there is no question of the desirability of using

278

BUCHANAN,SUTHERLAND AND FEIGENBAUM

some knowledge of the task domain, mass spectrometry, to construct a plan
for hypothesis generation. However, it is not clear how much knowledge to
use nor where to use that knowledge. Our one experience with using too
much knowledge in the planning stage, when we were using 31 amine
(nitrogen-containing) subgraphs, indicated that the planning stage could
accommodate a great number of rules; but the GENERATOR was the part
which became overburdened. This is only one example of the problems
caused by the lack of a meta-theory for system design.
4. Deductive tests. Despite the efficacy of the planning stage, there remain
ambiguities in the data which cannot easily be resolved prospectively. In task
areas such as this one, where testing at each node in the search space is not
feasible, deductive tests on the terminal nodes become especially important.
The STRUCTURE GENERATOR often constructs several structures consistent
with the plan because the planning stage does not reference an exhaustive
table of subgraphs. Thus it is necessary to bring in deductive tests upon
specific hypotheses to resolve ambiguities. The program deduces consequences
of a hypothesis (together with the theory) and looks at the available data for
confirmation or disconfirmation.
5. Generation of planning cues. Because the theory in the planning phase is
part of the more complex theory in the PREDICTOR it should be possible to
generate planning cues automatically from the more comprehensive theory.
Not only does this relieve (if not remove) the consistency worry, it also opens
the possibility of generating cues which might not otherwise have been noticed.
Although our own work is barely under way on this probIem, the potential
benefits are encouraging. In effect the program is asked to look at its theory
to say what would happen if structures of a specified class were put in a mass
spectrometer. Its answer is a set of identifying conditions for structures of
the given class. Hitherto it has been necessary to gather experimental data to
answer this question, but here exists the apparatus to generate identifying
rules independently of the laboratory data.
6. Table driven programs. Separating the theory from the routines which use it
facilitates changing the theory to improve it, on the one hand, or to experi-
ment with variations of it, on the other. Although embedding the theory in
the program’s LISP code increases running efficiency, it seems more desirable,
at this point, to increase the program’s flexibility. In the STRUCTURE
GENERATOR it is useful to be able to change the canons of generation.
In the PRELIMINARY INFERENCE MAKER, theidentifyingrules for groups,
as well as the groups themselves, change frequently and so should be easily
manipulated. The PREDICTOR'S theory also needs modifying frequently,
which cannot be done easily if all the theoretical statements are scattered
throughout the code. A complex body of knowledge is rareIy easy to modify
with confidence that the result is accurate and consistent. But the confidence
should increase if the statements of the theory are at least separable from the
rest of the program.

279

MACHINE LEARNING AND HEURISTIC SEARCH

Although each one of these general points provides direction for future
research, each gives rise to numerous problems ranging from global design,
search and representation problems to minute programming considerations.
We shall know we are making progress in artificial intelligence when we can
look back on these problems and wonder why they seemed difficult.

Acknowledgements

This research was supported by the Advanced Research Projects Agency (SD-183). We
gratefully acknowledge the collaboration of Professor Joshua Lederberg, Mr Allan Delfino,
Dr Alan Duffield, Dr Gustav Schroll, and Professor Carl Djerassi.

REFERENCES

Buchanan, B.G., Sutherland, G.L. & Feigenbaum, E.A. (1969) HEURISTIC
DENDRAL : A Program for Generating Explanatory Hypotheses in Organic Chemistry.
Machine Intelligence 4 (eds Meltzer, B. & Michie, D.) Edinburgh: Edinburgh
University Press (also Stanford Artificial Intelligence Project Memo No. 62).

Churchman, C. W. & Buchanan, B. G. (1969) On the Design of Inductive Systems:
Some Philosophical Problems. British Journal for the Philosophy of Science 20.

Duffield, A.M., Robertson, A.V., Djerassi, C., Buchanan, B. G., Sutherland, G. L.,
Feigenbaum, E. A., & Lederberg, J. (1969) Application of Artificial Intelligence for
Chemical Inference II. Interpretation of Low Resolution Mass Spectra of Ketones.
J. Amer. Chem. Sot., 91, 11.

Feigenbaum, E. A. (in press) Artificial Intelligence: Themes in the Second Decade.
Proceedings of the IFIP68 International Congress, Edinburgh, August, 1968 (also
Stanford Artificial Intelligence Project Memo No. 67).

Lederberg, J. (unpublished) DENDRAL-64 A System for Computer Construction,
Enumeration and Notation of Organic Molecules as Tree Structures and Cyclic
Graphs (reports to NASA).

Lederberg, J. & Feigenbaum, E. A. (1968) Mechanization of Inductive Inference in
Organic Chemistry. Formal Representations for Human Judgment (ed. Kleinmuntz, B.).
New York: Wiley (also Stanford Artificial Intelligence Project Memo No. 54).

Lederberg, J., Sutherland, G.L., Buchanan, B.G., Feigenbaum, E. A., Robertson, A.V.,
Duffield, A.M. & Djerassi, C. (1969) Application of Artificial Intelligence for
Chemical Inference I. The Number of Possible Organic Compounds: Acyclic Struc-
tures Containing C.H.O. and N. J. Amer. Chem. Sot., 91, 11.

Schroll, G., Duffield, A.M., Djerassi, C., Buchanan, B. G., Sutherland, G.L., Feigenbaum,
E. A. & Lederberg, J. (in press) Application of Artificial Intelligence for Chemical
Inference III. Aliphatic Ethers diagnosed by their Low Resolution Mass Spectra
and NMR Data

Sutherland, G. A Family of LISP Programs, to appear in (D. Bobrow, ed.), LZSP
Applications (also Stanford Artificial Intelligence Project Memo No. 80).

Waterman, D.A. Machine Learning of Heuristics. Ph.D. Dissertation (Stanford
University Computer Science Department) (also Stanford Artificial Intelligence
Project Memo No. 74).

280

